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Abstract

3 "2 In a packet switched network, several types of transmission may connect a pair of

nodes of the network. The delay characteristics of each type of transmission may be

significantly different and so a single queue to the nodeair operating under a first-

come, first-served rule may not be best.ithis paper.we developAboth exact and ap-
proximate mathematical models that determine various system-level performance

measures for a (K,N) scheme. Under this scheme arriving packets are placed in the

queue for one type of transmission until the size reaches K, whereupon arriving pack-

ets are diverted to the other transmission system. When the number of packets at the
first system drops to N(<K), arriving packets are again placed in the first queue. 6-_
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I I. Introduction

In a packet switched communication network, several transmission paths may exist

between two switches in the network (see [1]). The delay characteristics of each path
may be significantly different; for instance, one may be a satellite link (with its inher-
ent propagation delay) and the other a 56kb/s terrestial link. Thus if packets from the
same message are processed at the two links on a first-come, first-served basis, theyI will be received at the next node out of order. In order to alleviate this problem, a

(K,N) scheme can be formulated for the operation of the system.3 We consider the situation where there are two types of transmission and arriving
packets are placed in the queue for the type 1 transmission system until the number of

S packets in that system is K, whereupon packets are sent to the second transmission
system. Packets continue to be sent to the second queueing system until the number of
packets at the first queueing system drops to N(<K), at which time arriving packets are
again placed in the first system. The following figure depicts this scheme, which is
known as the of heterogeneous, multi-trunking queueing system.

SERVER 1

I -~ (K,

............ ERVER 2

Figure 1. Heterogeneous Multi-Trunking Queueing System

We are considering a queueing system composed of two queues and a single arri-Ival process of customers (packets). Arriving customers are placed into one or the other

queue based on the number of customers at the first queue. Once assigned to a queue
they remain there.

Queueing systems similar to this one have been considered before. In [2] Singh
examined the single queue, first-come first-served version of the system. That is, cus-

tomers are placed in service when a server is free based on their order of arrival. An-
other version of this system is the shortest queue problem where arriving customers
are placed in the queueing system with the smallest number of customers (see [31 and
[41 and the papers referenced therein).

SIn Section II we give a formal definition of the problem, our assumptions and a
complete mathematical analysis of the system. The analysis required finding roots of
an equation and the solution of a set of linear equations. In light of this, we developed

3 1
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an approximation to the system-level performance that does not require these poten-

tially complicated numerical problems. Section 111 documents the approximate model.

Numerical comparisons between the exact and approximate models, as well as other
numerical examples, are given in Section IV. Finally, Section V gives a summary of

5 the paper.
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III. Mathematical Performance Model

3 We are cnnsidering the system shown in Figure 1. We assume customers (packets)

arrive in accordance with a Poisson process with rate X. Let Qi, i=1,2, be the steady-

state number of customers in queueing system i. If Qi=K, then arriving customers are

placed in queueing system 2. This continues until QI=N (N<K), whereupon arriving

customers are again placed in queueing system 1. Once placed in a system, a customer

remains there. We assume that the length of time to serve a customer at server i is

exponentially distributed with mean 1/pi, i=1,2, and the service-time distributions and

Earrival process are all independent of each other.

Under this rule the number of customers in system 1 is at most K, whereas there

could be an infinite number at system 2. The value of N that is currently being consid-

ered in packet switched networks is N=K-1, so we first present an analysis of that
l case.

Case II.a: The (K,K-1) System

In this system, when the number of customers in system 1 reaches K, arriving

customers are sent to system 2 until we have the first departure from system 1. Let us

begin the analysis by defining

Pij = Pr{Ql=i, Q2=j} (i=0,1,...,K; j=0,1,.). ()

Then the behavior at system 1 is given by the results of an M/M/1/K queueing system.

Let pi = Vji, i=1,2; then from Gross and Harris [51, we have for i=0,1,...,K,

I f p~I-) (P #
Pr{Q 1 = i} =i (2)

K+1

The steady-state equations for pij are

XP00 = P1 o + t2Pol

(X+ 42) = 11 Pij + gt2PO,j+l

(\+gl+ g2)Pi j = XPi l,j+ glPi+l, j + g2Pi,j+ I : K-1; j> 1 (3)

i (X+4i1 ) = PK-1,o + P2PK-1

l+2)PK,j = KPKI,j +XPK,jl + .2 PKj+I : j =.

1 -3-



I I For i=O,1,. ..,K, and Izisi1 define

Pi (Z) = ; j' p i z j  (4)

Then we have the following matrix equation for the P(z):

I
a (z) -A.Z 0 ... 0 PO (Z)

-Xz b(z) -Az 0 0 P1 (z)

0 -Xz b(z) -PZ 0 0 P2 (z)

0 ... 0 -XZ b (z) -AL1 Z PKI(Z)

0 0 0 -z b(z) PK(z)

~Poo

P10

2 2(z-1 )  P20  (5)

PK-1,0

PKO

where

. [a(z) =(X. + 4t2) Z - 92

b(z) = (+ 41 + p2 )Z - 9 2  (6)

C(Z) = -XZ 2 +(X + 9i 1+9 2 )z -2 2

14 -4-



I Systems of equations like these appear frequently in these types of queueing problemsIand the solution technique is standard; for instance, see [6], [71, and [8].

Define the following recursions:

E =~z 1

Ef E 0(z) a a(z) (7)

Ej(z)= b(z)Ej...(z)-Xij 1 Ei-2 (z) (i -K-D

EK(Z) =c(z)EK...(z) -X I 2 E K- 2 (Z)

I and

FO F(Z) =C(Z) (8)

FK(z) =a(z)FK..l (Z) -X 1 Z 2 F K-2 (Z).-

I If A(z) is the (K+I4)x(K+I) matrix multiplying the column vector of tpi(z)} on the left

hand side of Equation (5), then

det[A(z)] = EK(Z) = FK(z). (9)

I Now let Aj(z) be the matrix A(z) with the right-hand side of Equation (5) in the ith

Scolumn, then, for i=,1,...,K we have

Pi () =det[A1 (z)] (0

det[A(z)]

S where

det[Ai (z] = J2 (z-1) j (Xz)i-k Pk E k-(z) F K- I-i (Z)

K -
+ ( 7 1 ,0 k i -(z)F1z) (11)

-5-



I

with the first sum set to zero when i=O. Thus the problem is solved once we find
Pi 0' i=0,...,K.

We need to develop K+1 equations in the unknowns {p i=0,1,...,K}. The first can

be obtained from the normalizing condition ( .(Pi(=1)" It is straightforward to
i=O

show, using this condition, that

K 1 K (I 1 )P( 2
SPi0 = 1-p (1-2(

i=0 1-p 1K+I

and that the right-hand side of Equation (12) must be positive for Q 2 to be a well de-

fined random variable. Since the quantity pK(1-P 1 )/(1-pK t ) is the portion of time cus-

tomers are arriving at system 2, p 2 times this quantity is the effective load on system

2, and this has to be less than 1 in order for pi,' to be well defined. Thus the require-

ment that the right-hand side of equation (12) be positive makes intuitive sense. There

are no existence conditions for Q1, unless K=co.

It is easy to show that det[A(1)1-1 and so z=1 is a root of the denominator of
. Equation (10). Using a similar analysis as in [6] or [8] one can show that there are K

distinct roots, t,, i=1,2,...,K, of det[A(z)]=O in (0,1). Since the numerator of Equation

(10) must also vanish at these points, we have K additional equations given by

K K-k
Z (kx) PkOEk_1(-i) = 0 (i=1,2,...,K). (13)

k=O

Thus Equations (12) and (13) give us the required K+1 equations in the {Pi 0 "

Summing Equation (5) we also have

K
P(z) Z P. (z)

i=o

'-p

-(_- pz (z), (141-P32 1 K1 + P2 K
1-101

where PK(Z) is given by Equations (10) and (11). From Equation (14) we have

-6-
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I

pl(1-Pl) (j=0)
i1I-P K+I

Pr{Q 2=j} = 1 1 (15)

P2 PK,j-I 1 - 1)

IUsing Equations (2) and (14) one can compute the expected values of Q1 and Q2
and hence the expected value of the number of customers, Q=Q1+Q2, in the system.

The average waiting time, E{W}, is then given via Little's Formula, E{W} = X-IE{Q}.
For the case when K=1 and N=0, we have

(] F (Z-)PO(Z) Poo

- -X z 2 +(X + A 1+ A 2)Z -2 L (Z) 92(Z) (16)-10

det[A(z)] = (z-1) (-X 2 z2 + ji2(k+ji1+ji2)z-jj2). (17)

S So

P (Z) = 2 [ Po0 (-X Z 2 +(X +g 1 + 2 )z-P 2 ) +g1 zp 10 ] (18)
_ P0(Z) = -X 2 z 2  (,

+4, 2 ( +t I+g.2)z -2.

and

At2 [Xzpo0 +P (-+4 2 )z- 2
]  (19)P, P(Z) 2 -X2z 2  10(X +-Z2t19

-- i.+P- 2 X +4-l+42)Z 2

where

0  (1-p p1  [1-(1-p)

PO 2 1 +P 1  (20)

k and

O -P2 P1 ' (21)

7i
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with

t -=2 [ t -2 (X+i1+Ji2)2_4X2] (22)
2x

Even in this simple case no nice expression exists for E{Q 2}, so one is forced to dif-

ferentiate P(z).

Case fl.b: The (K,N) System
For the case of a general N, we have to redefine pij to take into account which

system is receiving arriving customers. When N=K-1 the value of Q1 determines which

system receives arriving customers. Begin here by letting I be an indicator variable

such that

0 when arriving customers go to system 2

1 when arriving customers go to system 1

and define

p. - Pr{Q1=i, (2=j, 1=1}.
ij

Now if 1=0 then p° 0 for i=0,1,...,N and all j. If I=1 then p1 =0 for all j. As in case
ij Kj

II.a one can write down the steady-state equations in p. and the resulting generating
i]

ifunction equations are
A(z)rl(z) = .2 (z-1)FI 0  (23)

where

a(z) -gtlz 0 ... 0

-Xz b(z) -illZ 0 ... 0
0 -X z b(z) -PI Z  0 . .. 0

0 0 -Xz b(z) -g 1 z 0 . ... - 1 z (N+1)
A(z)= 0 -Xz b (z) -gtlz 0 ... 0

p -z b(z) -lpz 0 ... 0 (K)
0 c (z) -- lz 0 . .. 0

c(z) -ptz
_0 . . 0 -Xz 0 . . 0 c(zL

(K)

-8-



I

P, (z) poo

Pt(z) I

p (z) PK 1 (Z) ' 0 PKt 1, 0

P°,I(z) p°,0

PKO (Z) PO

S and a(z), b(z), and c(z) are defined as before. We have annotated in which of the

rows and columns of A(z) structural changes occurred. Again we have

(P 0 (z) --0 for i=0,1,...,N)

U1
P 0 det[Ai (z)] (i=Nil,...,K); (24)

i( ) = 4 ( -)det[A (z)]

where A i(z) is the matrix A(z) with P0 in the K+i-N column. We start numbering the

columns of A(z) with 0. For 1=1 we have an analogous form for Pj(z) for i=0,1,...,K-1

0
as that given for Pi(z), except that det[Ai(z)] is the matrix A(z) with P0 in the ith col-

umn. There is no simple recursion we can give for det[A(z)] or det[Ai(z)] as was

dohe in the case of N=K-1. But the analysis is still the same; namely, one has to find

the 2K-N-1 roots of det[A(z)] in (0,1), and set the numerator of one PI(z) to zero at

these roots to find 2K-N-1 equations for p0 09 i=N+I1,...K and p1 i=0,1,...K-1.

The other equation is obtained from the normalization condition and we have

K K

pI+P0 + -- P1 = 1-p Pr{I=0). (25)
i=N+1 10 1-0 10 2

Thus we need only find an expression for Pr(I=0} to complete the solution.

-9-



In order to develop an expression for Pr{I=0} we use first-passage results from the

standard MIM/1 queueing system (see [9]). Let -ij be the average first-passage time in

3 system 1 from state i to state j; then

SPrt =0 - "TKN (26)
TKN + T NK

S In system 1 the expected time to go from state K (Q1 =K) to N (Qi=N) is the time for

K-N departures, so that

TKN = (K-N)/gi. (27)

S Now to go from state N to state K for the first time in system 1 is the same as in a

standard M/M/1 queue, and is given in [91 as

K-1 1-pn +1

T KN = nN 1

Using all of these results we thus haveI
Pr{I=0} = pl(1-pl) (K-N)

K-1 (29)
p 1-Pp (K-N) +

n=N p

We may also study the behavior at system 1 in isolation. Using z=1 in the equa-

tions for P (z) one gets the following equations for pi = Pr{Ql=i, I=1):

I - 'I Pi= 0

Xpi_1 + (X+ 1) 1  = 0 (i=,2,...,N-l)

p1 +(X.+l~t)p 1 J 1 ='tpO (30)-XPNIX+ P AdNI- A, PNI Al 1
N I N Nll) p_ (30)+

.,pi_1 +("9 1) Pip 1 = 0 (i=N,N+1,...,K-2)

-Xpl + (X +4 l't) PK-

and

2 - 10-
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PN- = P+2 P PI K-1'(31)

I The solution to these equations is

(0 (i=0, 1,...,N)

0 K( 1 .. l) P1 (32)

fl and

1 i K I 33
p i i- , P (i=N+1,N+2,...,K) (3

U 1-p1K-N

where

p, = Pr{I=0} 1- PK,10 K (K-NX1-p 1 ) (34)

S from which we have

PI j I (i=0, 1,...,N)

r=1 1 - i p0  (i=Ni-1,N+2,...,K) (5

1-K-N

For the case when p1=1 we have

pr{I=0} 2
3+K+N

S and

PrQ = I 3+K+N (N)(36)
112(K+l-i) (N+1 i < K)

(K-N) (3-11-



I III. Approximate Behavior at System 2

3 In Section U we gave a complete analysis of the behavior of system 1, with results

contained in Equations (32)-(36). The behavior of system 2 rests on finding the roots

[ of an equation and then solving a system of equations. The results for system 1 are
computationally simple enough; it would be nice to have similar simple expressions for

= system 2. Its behavior is similar to a standard M/MI1 queueing system where the arri-
val process of customers alternates between on and off times. Kuczura 1101 presented

the idea of an interrupted Poisson process (IPP) as a way of analyzing overflow

S streams in loss systems. Heffes [11] extended this work to a GI/M/1 queueing system
where the arrival process is an interrupted Poisson process. His results will be used

S here to approximate the behavior at system 2. For an IPP it is assumed that the on

and off time of the underlying Poisson process is described by independent exponen-

S tially distributed random variables. In general, this would not be true at system 2, ex-

cept in the case of K=1, N=0. But the results of Heffes should provide an excellent ap-

proximation to the behavior of Q2.
More formally, for system 2 we have a basic Poisson arrival process with rate X.

The input is turned on (off) for a period of time that is exponentially distributed with

mean T- 1 (w-1). Following Heffes [11] the interarrival distribution at system 2 of cus-

tomers is the mixture

A(t) = ki (1-e - r lt) + k2(1e-rt) (37)

where for our system we have

y= ii /(K-N), (38)

x(I-p )
K-1 1-pn+l (39)
K-i pnl

n=N

r, =_ {X+o+y+(\+ y+)2 -4w} (40)

r 1 X+W + -y; W-+- (41)
2 (-w ) -4Xw}
2

and

I-1



a

- r (42)

3 ki =  2 k2 = I - k,(r, -r 2

Using standard results from the GIM/i queueing system (see [5]), we have the

approximation to the number of customers at system 2 given byI
EA{Q 2 ) = P 2 Pr{I=0} (43)

1-0

' where Pr{l=0} is given by Equation (29) and

2-TI0 = VT 2 - 4 1 13  (44)

with

= r22 + r l12 +t2, and

STr3 =-(kl rl 2 + k2 r2 92 + rl r2).

We have just written down the expected value of Q2; but using the results from

the GIM/1 queue one can give an expression for an approximation to the probability

S distribution of Q2 as

1 - p2 Pr(I=O} Gj=O)

Pr{Q2 =i} = Pr=0) 0=2) (45)

P Pr{l=0} (1- 0)0 jt(~ ,,.)

One can use this approximation along with the exact results for system 1 (see

Equation (35)) to give an easily computed approximation for the total number of cus-

tomers in both systems. The average waiting time can then be found via Little's For-

mula. In the next section we compare the exact results with approximations.

-13-
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IV. Numerical Examples

3 In this section we present some numerical examples using the results that were
developed in Sections II and III. We investigate three areas:

a. Comparison of exact and approximate models;

b. Characterization of optimal K in the (K, K-I) system that minimizes expected

*number of customers in the system; and

c. Comparison of multi-trunking with first-come, first-served schemes.

Table I presents some comparisons of the exact results for the case K=2, N=1,
and the IPP approximation of Section MII. In the IPP case we are approximating the on
and off periods of the arrival process to system 2 by exponential distributions with ap-
propriate means. Since we can give exact values for the mean, the only facet of the

approximation comes from the form of the underlying distribution. When K=l and N=0,

the on and off times are exponentially distributed with means t- 1 and A- 1 and the
1

approximate and exact results do agree. For the case of N=K-l, the on time is again
exponentially distributed with mean l/tl and so only the off time distribution is being
approximated. Thus for the major cases of interest one would expect the approxima-

tion to be good. This is evident in Table 1.

= 1 A . = 5, =1 l10, =1

X E{Q} . E{Q} X E{Q}

.3 .3682 2 .8073 2 .3082
.3680 .7944 .3068

.8320 1.352 .6556

.6 .8287 2.5 1.316 .6461

.9 1.432 2.467 1.414
1.415 2.367 1.372

1.2 2.402 6.213 4.168
1.2 2.346 5.863 3.974

-" TABLE 1. Comparisons of Exact and Approximate Models.

M



In Table 1 we have compared the results of the approximation with the exact re-
suits for the case K=2, N=l. The exact results are given as the upper entry in each
box. For increasing arrival rates three comparisons were made; namely,

1/2= 1, 5, and 10. For each case considered we see that: the approximation under-
estimated the exact result; as the arrival rate increased the approximation got worse;
and the ratio of the service rates was not a factor in the goodness of the approxima-

toSince the approximation is underestimating the exact results, one would expect
that the off time of the arrival process at system 2 would be better approximated by a
distribution whose coefficient of variation is greater than one. We know of no simple
results for the JPP with non-exponential on/off times. The best the approximation did
was for the case X. =.3, Jgi = 92 = 1, with a relative percent error of .054%; and the
worst case was a 5.6% error for X = 3.5, gii = 5, and 112 = L. One would expect this
type of behavior because as X~ increases, the load on system 2 increases and the ap-
proximation is being used to a greater extent. But even in the case of X = 3.5, jgi = 5,
and 112 = 1, the accuracy is quite good. The fact that there were not any great differ-

ences in the accuracy of the approximation as 111/112 ranges from I to 10 is quite a sur-
prise and perhaps follows from the fact that the mean off time (see Equation (39)) de-
pends only on X and P1 and not on 111 and 112. All in all, we are quite satisfied with
how well the LPP approximation does.

~ When cost is not a consideration, one might guess that the best value of K in a
(K, K-I) system would be the value of K such that K 9 11/112 where 111 ! 112, and

one would select the integer closest to 111/112 if the quotient were not an integer. Us-
ing the approximate model for Q2 and the exact results for Q1, we investigated three
cases to try to determine if this were so. The results are given in Figures 2, 3, and 4.
In each figure the values of E{Qj}, E{Q 2} and E{Q} = E{Qj} +s EM)2 are given as a
function of K. For all three figures one sees that the minimum of E{Q} does not oc-

cur exactly at K = 111/112 but is close. Figures 3 and 4 demonstrate that the optimal

value of K does depend on X as well as 111/112. In the case of X = 4 (111/112=10), the

expected number of customers in the system was constant for K>5. Whereas when
X = 8 the minimum occurred in the neighborhood of K = 9.

15B
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FIGURE 2. EXPECTED QUEUE LENGTHS AS A FUNCTION OF K FOR

UX=3.5, p. 1=4 AND 2=

- 16 -



U 1.4

U. 1.2

E<Q >=EK Q1+E<>

I1.0

.8- i

.6

.4

.2

5 10 15 20 25
K

FIGURE 3. EXPECTED QUEUE LENGTHS AS A FUNCTION OF K FOR
X=4, lk=10, AND i2=l

C -17-



I
! ,7

6

5

E<Q >Z-E<Q1+E<Q2>

4

* 2
/E 4 /

5 10 15 20 25
K

I FIGURE 4. EXPECTED QUEUE LENGTHS AS A FUN CTION OF K FOR

X8, IL=10, AND i2 -1

~-18-

iIIIIl li~lltll~i'/t t. ,';;. .;' ;k, 9c;."c



At first glance one would expect that the (K, K-I) scheme would result in a

smaller expected number of customers in the system than if one just formed one

queue and placed customers in service as a server became free. The second system

was studied by Singh in [2], and his results were used to compare with the multi-

trunking scheme (K, K-l). This analysis is given in Tables 2, 3, and 4. In each of the

tables, the total service rate jtl + 92 was fixed at 20 and gil was varied. For each gtl,

we found the K* which minimized the expected number of customers in the multi-

trunking system, and we used the EPP approximation at system 2. For each table, one

sees that the expected number of customers in the multi-trunking system is less than

that under a single queue with first-come, first-served rule (Singh) only when 41/h12

is large. But, in general, the results of the two rules are relatively close for the cases

we considered.

As we pointed out in Section I, the multi-trunking scheme tends to keep packets

from the same message in the appropriate order of arrival at the receiving node. The

main reason why a single queue with first-come, first-served rule (Singh) sometimes

results in a shorter total queue is that there are times under the multi-trunking scheme

where server 1 is idle and server 2 has customers requiring service.

Several other interesting facts can be seen from these tables. First, as pi de-

creases, the expected number of customers increases for the multi-trunking scheme.

Thus, if .li ard 1i2 are relatively close in value, then one would not want to consider a

multi-trunking type of scheme. For Singh's system, the behavior of the expected num-

ber of customers in the system is convex with a minimum occurring in the neighbor-

hood of ig = 12.
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I _ _

Multi-
K Trunking Singh

19 >-- 12 1.111 1.705

18 7 1.234 1.538

17 5 1.338 1.436

16 4 1.418 1.373

t* l 15 3 1.487 1.333

h 14 3 1.534 1.311

13 2 1.587 1.303

U
12 2 1.588 1.303

11 2 1.616 1.315

10 2 1.664 1.331

TABLE 2. Expected Numbers of Customers - Multi-Trunking vs.

Singh- X - 10and ti + 42 =20.
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_____ _ _ _ _ _ _ _____Multi__

K Trunking Singh

19 12 2.732 3.129

18 8 2.967 2.988

17 6 3.126 2.888

16 5 3.236 2.818

15 5 3.338 2.771

14 4 3.370 2.735

13 3 3.481 2.726

12 3 3.459 2.722

11 3 3.507 2.729

10 2 3.545 2.745

TABLE 3. Expected Numbers of Customers -Multi-Trunking vs. Singh-

X= 14 and 41 + 2 =20.
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-~ Multi-
AlK Trunking Singh

WP19 19 9.721 9.847

18 14 9.737 9.678

17 11 9.881 9.636

16 9 10.051 9.567

15 8 10.188 9.517

j14 710.356 9.484

13 6 10.557 9.464

12 6 10-676 9.457

11 5 10.793 9.460

10 5 10.953 9.474

TABLE 4. Expected Numbers of Customers - Multi-Trunking vs. Singh-

X IS8and gl4 4.2 =20.
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V. Summary

We have presented exact and approximate performance models for a multi-trunk-

ing scheme for packet switched networks. The exact solution was numerically compli-

cated by the fact that one had to solve for roots of an equation and then solve a sys-

,* tern of linear equations. The approximation required none of these complications and

gave results that were in good agreement with the exact approach.

Using the approximate model, we made some comparisons with a single queue

with first-come, first-served rule and found that the multi-trunking scheme yields a

smaller expected number of customers only when the ratio of service rates is large.

Finally, we investigated the optimal value of K that minimized the expected num-

ber of customers in the (K, K-I) system. It was found to occur around the value of

K = 11/42 (with no costs considered). A very interesting problem to consider would be

to determine whether the optimal value of K is changed under an imposed cost struc-

ture. For instance, if there is a significant cost to switch customer arrivals from system

I to system 2, then one would expect the optimal value of K to vary significantly.

Jr2 -
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